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SUMMARY

The parametric analysis of the thermal wave model of the non-steady combustion of solid propellants is
carried out under a sudden compression. First, to observe non-linear effects, solutions are obtained using
a computer under prescribed pressure variations. Then, the effects of rearranging the spatial mesh,
additional points, and the time step on numerical solutions are evaluated. Finally, the behavior of the
thermal wave combustion model is examined under large heat releases (H) and a dynamic factor (b). The
numerical predictions show that (1) the effect of a dynamic factor (b), related to the magnitude of dp/dt,
on the peak burning rate increases as the value of b increases. However, unsteady burning rate ‘runaway’
does not appear and will return asymptotically to apn, when b]10.0. The burning rate ‘runaway’ is a
numerical difficulty, not a solution to the models. (2) At constant b and m, the amplitude of the burning
rate increases with increasing H. However, the increase in the burning rate amplitude is stepwise, and
there is no apparent intrinsic instability limit. A damped oscillation of burning rate occurs when the value
of H is less. However, when H\1.0, the state of an intrinsically unstable model is composed of repeated,
amplitude spikes, i.e. an undamped oscillation occurs. (3) The effect of the time step on the peak burning
rate increases as H increases. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In solid rocket propulsion systems, the transient burning rate of a solid propellant under an
abrupt changing non-steady pressure condition departs greatly from the steady state burning
rate measured in strand-burner experiments. This means that, under transient conditions, the
instantaneous pressure level does not dictate the magnitude of the regression rate of a solid
propellant.

The ability to predict the burning rate of a solid propellant is of primary importance in the
design of high performance solid rocket motors because both the thrust level and the burning
time depend upon the burning rate of the propellant. Any improper treatment of the dynamic
burning phenomena may cause a significant amount of inaccuracy in predictions of system
performance, especially during ignition, extinction by depressurization and resonant burning.

Several models [1–5] have been constructed based on the quasi-steady flame assumption.
‘Quasi-steady state of the gas phase’ means that the gas phase region should respond and
adjust to pressure changes at least an order of magnitude faster than the solid phase thermal
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wave. A main difference in these models can be traced to the method of evaluating the heat
feedback from the gas phase flame to the interface or establishing the gradient boundary
conditions. In general, these models have been somewhat successful in correlating experimental
data after the fact, but are not sufficiently accurate or complete to predict burning rate
behavior a priori. The majority of these studies put emphasis on describing the heat feedback
process and the effects of flame region on solutions. The stability or availability of numerical
solutions have yet to be fully examined. Kooker and Nelson [6], indicated that ‘Given the
major assumption of a quasi-steady flame region, all three combustion models predict nearly
the same burning rate response, regardless of the differences in the analysis of the gas phase
flame zone. The dominant influence is the response of the thermal wave in the unburned solid.’
In this paper it was thought that the boundary condition reconstruction was unnecessary,
although it was also important to solutions, and emphasis has been put on the general
behaviors of solution of the thermal wave model. A typical model by Krier et al. [1] considered
the combustion problem on a sufficiently broad scale for large heat evolution or pressurization
rate. In that work, an unrealistic result was obtained. The response of propellant burning rate
was intrinsically unstable under dynamic conditions with a large heat evolution at the surface
or a high pressurization rate even though a steady state solution exists. Kooker’s study [6]
indicated that the final state of an intrinsically unstable model at constant pressure was
composed of repeating finite amplitude spikes, and burning rate ‘runaway’ was a numerical
difficulty and was not a solution to the models during a large heat evolution. A recent study
[7] has shown that when a higher pressurization rate, b]10.0, burning rate ‘runaway’ does not
appear and returns to apn after the initial perturbation. Hence, theoretical analysis has yet to
be accomplished, such as the influence of non-linearity and the parameter effect.

The objective of the present study is to examine the thermal wave combustion theories
originally developed for the study of combustion instability and/or extinguishment in solid
propellant rocket motors and to investigate the behavior of the KTSS model by Krier et al.
Another objective is to see if the desired solution is independent of the techniques used to
obtain it. A prescribed time-dependent pressure is simply imposed at the edge of the flame
zone. This was done to create a more controlled numerical experimental, though it is physically
unrealistic. In keeping with the need for comparative tractability, a preliminary numerical
technique is used.

2. MATHEMATICAL MODEL

2.1. Basic equations of the combustion model

In a similar fashion to the previous approaches, the one-dimensional problem is considered
and the propellant is homogeneous, incompressible and inert. The region of solid phase
reaction is assumed to be sufficiently narrow and close to the solid–gas interface to be
considered for surface reactions, i.e. the solid is converted into gas by a global pyrolysis
reaction, which occurs at an infinite thin interface. The gas phase flame is quasi-steady and
remains anchored to the interface.

As shown schematically in Figure 1, the origin is fixed to the solid–gas interface; therefore,
the solid is translating at a velocity equal to the pyrolysis rate r(t). The combustion model
reduces to the following initial/boundary value problem describing the thermal wave in the
unburned solid propellant (a detailed derivation can be found in [1]):

The energy equation for the solid phase
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Figure 1. Combustion model configuration.

ut+Ruh−uhh=0. (1)

The boundary condition

u(−�, t)=0, (2)

uh(0, t)=RH+ [P2n(Pn/m−H)]/R. (3)

The initial condition

u(h, 0)=en. (4)

The pyrolysis rate at the surface (x=0)

R=u s
m, (5)

R=Pns exp
� A(us−1)

1+ (A/E)(us−1)
n

. (6)

The pressure function

P=1+DP(1−e−bt). (7)

The response of the solid–propellant combustion to the dynamic pressure functions P(t) is
given by the burning rate R, the surface temperature us. Since Equation (5) is simplified from
the usual Arrhenius law, r=A e−Es/RTs. In order to evaluate the simplicity and achieve
generality, a computational comparison is performed by employing an unsteady Arrhenius
expression, Equation (6). For all computations shown in the present paper, ns=0. Similar to
Krier [1], Kooker [6] and Wang [7] also predict a value of burning rate identical to apn when
the pressure is held constant and the transient portion of the solution has vanished.

The problem is non-linear due to the relation with Equations (1) and (3). An exact analytical
solution of the partial differential equation (1) with the foregoing non-linear auxiliary
conditions seems improbable. However, numerical solutions are achieved with a digital
computer.

2.2. Finite difference equations

Because of the potential difficulty introduced by the non-linearity, the present study examines
numerical solution techniques that have been used in previous investigations to solve combus-
tion problems of this type. Numerical experimentation is performed by varying only three
parameters for the pressure forcing function considered.
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The numerical technique is expressed in the following notation. The superscripts n and n+1
refer to the current time level (when the solution is known) and the new time level, respectively.
The subscripts j−1, j and j+1 refer to an arbitrary interior mesh point, j, and its two adjacent
neighbors. For reasons to be discussed below, the mesh point distribution is non-uniform and
hence Dhj−1, Dhj and Dhj+1 are not necessarily equal. The partial differential equation is
discretized as follows:

u j
n+1−u j

n

Dt
+R

Dh j
2(u j+1

n+1−u j
n+1)−Dh j+1

2 (u j
n+1−u j−1

2 )
DhjDhj+1(Dhj+Dhj+1)

−2
Dhj+1(u j−1

n+1−u j
n+1)+Dhj(u j+1

n+1−u j
n+1)

DhjDhj+1(Dhj+Dhj+1)
=0.

The finite difference equation (FDE) is only an approximation to the partial differential
equation (PDE). The relationship between the two is based on Taylor series expansions and
can be written as

FDE=PDE−
Dt

2
utt+ [RDhjDhj+1+2(Dhj−Dhj+1)](uhhh/6)

+ [RDhjDhj+1(Dhj+1−Dhj)−2(Dh j
2−DhjDhj+1+Dh j+1

2 )](uhhhh/24).

If the spaced mesh points are equal, the above equation reduces to the more familiar form

FDE=PDE−
Dt

2
utt+ (2Ruhhh−uhhhh)(Dh2/12).

Hence, the formal order of accuracy is O(Dt) and O(Dh2). Since the present combustion
problem involves a thermal profile that may have very steep gradients near the interface, the
spatial mesh must be closely spaced in this region otherwise the truncation error will swamp
the desired solution. The spatial steps are so chosen as to satisfy the stability criterion. The full
region (−155h50) is divided into four sections to determine a 231 point system (21 points,
−0.015h50; 30 points, −0.105h5−0.01; 50 points, −2.005h5−0.1; 130 points,
−155h5−2). The finite difference equation, boundary condition and initial temperature
profile in the solid are given by

−
(RDhj+1+2)Dt

Dhj(Dhj+Dhj+1)
u j−1

n+1+
�

1+
(2+R(Dhj+1−Dhj))Dt

DhjDhj+1

n
u j

n+1

+
(RDhj−2)Dt

Dhj+1(Dhj+Dhj+1)
u j+1

n+1=0j
n, for 15 j5230; (8)

the initial temperature profile

u j
0=

Á
Ã
Í
Ã
Ä

exp[−DhA(231− j )] (2115 j5230)
exp[−0.01−DhB(210− j )] (1815 j5210)
exp[−0.1−DhC(180− j )] (1315 j5180)
exp[−2.0−DhD(130− j )] (25 j5130)

; (9)

the boundary conditions

u0
n+1=0, (10)
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u231
n+1−u230

n+1={RH+ [P2n(Pn/m−H)]/R}DhA ; (11)

the pyrolysis rate

R=Pn, (12)

R=exp
� A(u231

n+1−1)
1+ (A/E)(u231

n+1−1)
n

, (13)

R= (u231
n+1)m; (14)

the pressure function

P(I ·Dt)=1+DP [1−exp(−b ·I ·Dt)] (I]0). (15)

3. MATRIX EQUATION

The following variables are defined:

A(0)=0, B(0)=1,

B(231)=1, C(231)= −1,

u0
n=0,

u231
n ={RH+ [P2n(Pn/m−H)]/R}DhA

A(I)=
(RDhj−2)Dt

Dhj+1(Dhj+Dhj+1)

B(I)=I+
[2+R(Dhj+1−Dhj)]Dt

DhjDhj+1

C(I)= −
(RDhj+1+2)Dt

Dhj(Dhj+Dhj+1)

Â
Ã
Ã
Ã
Ì
Ã
Ã
Ã
Å

(25I5230).

Equations (8)–(15) are rewritten as

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

B(231) C(231) 0 ··· ··· 0 0

A(230) B(230) C(230) 0

� · · · �
� · · · �
0 A(1) B(1) C(1)

0 0 ··· ··· 0 A(0) B(0)

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

u231
n+1

u230
n+1

�
�

u1
n+1

u0
n+1

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

u231
n

u230
n

�
�

u1
n

u0
n

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

. (16)

The matrix equation (16) is solved for dynamic rate R by using the full implicit difference
scheme.

The method of solution proceeds as follows. At any given instant of time, t, the values of
pressure burning rate and surface temperature are evaluated from Equations (12)–(15). With
the calculated values of P, R and Ts, the boundary condition (11) is evaluated by assuming,
initially as a first approximation, that R=Pn. The matrix equation (16) is solved for
temperature. This gives the new temperature profile at the next instant of time t+Dt. From
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this new temperature profile and new value of surface temperature, the burning rate R is
evaluated again from Equation (13) or (14). The newly calculated value of R is used to repeat
the entire procedure, until no further change is noted between two adjacent R values.
Convergence is assumed when the difference between the R at the new time level and the R at
the current is less than a specified tolerance (in this study, 10−10 using double precision
computation). This is an iterative procedure, where Equation (16) along with the pyrolysis
rates (13) and (14) are updated cyclically. This completes the calculation for one step and gives
the value of the dynamic burning rate R at the instant t+Dt. Table I gives the typical value
and range of parameters in this analysis.

The numerical computations are based on the pressure profile described by Equation (7),
which is not a good representation of a typical pressure time-history; however, it is relevant to
most problems if viewed as a large amplitude pressure wave suddenly passing over a propellant
grain that is burning at a steady state. For this reason, any results that follow from Equation
(15) are of interest to the present analysis. The DP value was approximately 2.5 for most of the
experiments, and this value is used for the numerical studies of compression effects. Parameters
m and n are held constant at 6 and 0.5 respectively. The dimensionless time t is written as

t= (r0
2/a)t=

�rscsr0
2

ks

�
t. (17)

Substituting the data of Table I into Equation (19) gives

t=
1.54×1.55×0.752

0.0031
t=433.125t,

i.e. per unit dimensionless time equals 2.31 ms. Differentiating Equation (15) with respect to
time t gives

dP
dt

=DP ·b ·exp(−bt). (18)

Substituting Equation (17) into Equation (18) and noting that P=p/p0 and when t=0,
Equation (18) can be written as�dp

dt
�

0

=p0(DP)(b ·r0
2/a). (19)

Table I. Parameters of solid propellants

UnitRangeValueParameter

H 0.75 0.45–1.044
m 6
n 0.5

2.5DP
b 0.5–�1.0

MJ mol−10.0628Es

1.54 g cm−3rs

1.55 J g−1 K−1Cs

ks 0.0031 J cm−1 s−1 K−1

R0 cm s−10.75
K623Ts0

T� 278 K

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 627–640
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When p0=12 bar, DP=2.5, a/r0
2=7.5 ms, i.e. b=1.0 is corresponding to (dp/dt)0=4000

bar s−1.

4. RESULTS AND DISCUSSION

Calculations of the burning rate to rapid compression transients are shown in Figures 2–9.
Figure 2 shows the effect of a dynamic factor related to the magnitude of dp/dt on the

dynamic burning rate. When bB10.0, the burning rate response is the same as in Figure 10
of Reference [1]. No runaway appears when b]10.0 and the burning rate returns to the initial
value when b=2 at a non-dimensional time of approximately 0.6. This result is different from
those of Figure 10 in Reference [1]. In that work, the unbounded burning rate predicted for
b=10 is one of several calculations used as evidence of burning rate runaway, also called ‘an
unstable burning rate response’. To see if ‘runaway’ exists under more extreme conditions, the
dynamic factor (b) is increased to �. Further computations of this case show that the
maximum amplitude increases with increasing b, but when b\50, the amplitude oscillates
around 9.55. Table II gives these maximum amplitudes of burning rate with variations of b.
At any b value the solution remains bounded and does not run away to infinity.

Figure 3 shows the predicted dynamic burning rate under identical input conditions like
Figure 7 in Reference [8]. Qualitatively, the burning rate response is the same. The value of
peak burning rates is less than those predicted by Kooker et al., which can be traced to a larger
time step. Further computations show close agreement with variations of the time step, except
near the peak of the burning rate as shown in Figure 4. The peak burning rate increases as the
time step decreases. The smaller the time step is, the less the effect is. On the other hand, the
effect of the time step on the burning rate is very dependent on two parameters, H and b. To
achieve a desired accuracy for the two larger parameters, a smaller time step is needed. The

Figure 2. Burning rate response: effect of varying b during compression.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 627–640
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Table II. The maximum values of peak burning rate of propellants with
variations of b

Peak burning rateParameter b

3.5482
5.995

10 7.73
30 9.17

9.4750
9.5480
9.57100

120 9.55
9.56140
9.53�

H=0.75, Dt=0.002, n=0.5, m=6.0, DP=2.5

difference of the peak burning rate is of the order of 10% from Dt=0.002 to Dt=0.00002
when b=2.0. When DtB0.0015, the burning rate cures overlap as shown in Figure 4. Table
III gives the effects of the time step Dt on solutions under a fixing H. When H is greater than
0.75, the effect of the time step on the peak burning rate is obvious. Furthermore, the effect
increases as H increases. At a larger surface heat release H, this could lead to errors. For
example, the peak burning rate is about 30.51 at Dt=0.002, and the peak burning rate rises
to 58.49 at Dt=0.0002, i.e. the increase of the peak burning rate is 27.98. However, the error
will decrease with decreasing the time step. The peak burning rate is 65.24 at Dt=0.0001, and
the peak burning rate rises to 75.44 at Dt=0.00001. The error decreases from 27.98 to 10.2.

Figure 3. Burning rate response of KTSS model (recomputed results).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 627–640
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Figure 4. Burning rate response: effect of varying time step during compression.

The larger H is, the less the time step needs to achieve a desired solution. Table IV gives the
effects of the time step Dt on solutions under a fixing b. Hence, the error is not from the
method used to obtain it but from a steep gradient burning rate response for a larger H and
b. This loss in accuracy can be limited under an acceptable region by selecting a proper time
step for any H or b.

On the basis of the computations, a decrease or increase in spatial step yields nearly equal
results with acceptable accuracy. Repeating this computation with a 2310 grid point system,
which replaces a 231 grid point system, shows that errors of the peak burning rate in Figure
3 are about 10%. When H=0.9 and 1.04, the peak burning rates are 27.39 and 44.68 at
Dt=0.002 respectively. The numerical solution was not sensitive to the spatial step. However,
if the spatial step restriction or a sufficient number of mesh points near the propellant interface
are eliminated, further computations of this case will predict a divergent solution.

Also of interest is a comparison of between Equation (5) and Equation (6) under identical
input conditions when driven by the same exponential pressure profile. Qualitatively, the
burning rate response of two equations is the same. However, there occurs a shift of peak
burning rate predicted by a power law approximation to the Arrhenius exponential. This is
indicated in Figure 5. The shift of the peak burning rate is completely traced to the assumption

Table III. The maximum values of the peak burning rate with changing the
time step

b Dt=0.002 Dt=0.0002 Dt=0.00002

2.3482.321 2.352
3.548 3.5762 3.589
9.17 10.9330 11.16

H=0.75, n=0.5, m=6.0, DP=2.5.
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Table IV. The first peak burning rate with changing the time step

Dt=0.002 Dt=0.0002 Dt=0.0001 Dt=0.00002 Dt=0.00001 Dt=0.000005H

2.32 2.348 2.35 2.3520.75
0.9 30.51 58.49 65.24 73.86 75.44 76.26

40.46 86.38 100.3 126.2 132.8 136.81.0
44.34 98.29 115.01.04 148.7 159.7 166.1

1.044 44.36 99.25 113.1 151.1 162.7 169.7

n=0.5, m=6.0, DP=2.5, b=1.0.

that cp=cs in the computations of the three models [6]. The effect of the pyrolysis rate on the
peak burning rate has nearly been considered.

There is considerable interest in the relationship between a possible runaway condition and
the intrinsic instability limit of the mathematical model. Figures 6–9 show that as H increases
the value of the burning rate amplitude increases. However, the amplitude of the burning rate
increases stepwise. There is no apparent intrinsic instability limit. When H is less a damped
oscillation occurs, and finally approaches apn. When H is larger, an undamped oscillation
occurs, which does not approach apn. The results shown in Figures 6–9 contain sharp finite
amplitude ‘spikes’, similar to those reported in [6]. An important difference, however, is that
the burning rate response in Figures 6–9 is due to a monotonically increasing pressure field
and not a uniform pressure field. Although these results appear unconventional, they are the
actual solutions to the equations. It is pointed out that the heat release H and the dynamic
factor b in the present investigations are probably larger than practical values. However, this

Figure 5. Comparison of burning rate response predicted by two pyrolysis rates at the surface with
Equation (5) or (6).
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Figure 6. Burning rate response: variation of surface heat release parameter H.

is needed, whether for the development of the thermal wave models or for practical use for the
future. The time required for a significant change in burning rate can be obtained from Figures
2–9, as the result of the change in the environment. This change can occur with a small
fraction of time a/r0

2 (Dt=1), commonly referred to as the characteristic response time of the
thermal wave. This time required for change decreases as the value of H or b increases. No

Figure 7. Burning rate response: variation of surface heat release parameter H.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 627–640
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Figure 8. Burning rate response with H=0.9.

Figure 9. Burning rate response with H=1.04.
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directed experimental results can be compared with the predicted dynamic burning rates.
However, the effect of pressure change rate on the response time of propellants burning rate
measured in [9] is in agreement with the effect of b. In that work, the delay time of the burning
rate decreases as the pressure change increases. The experiments underwent a rapid depressur-
ization [10–13], showing that the transient burning rates exhibit low frequency oscillations that
are not present in the chamber pressure. Similar to these results, large amplitude spikes may
occur, their presence could be obscured by gas phase damping and remain undetected by a wall
pressure gage. Hence, the possibility exists that this type of behavior is a triggering mechanism
for combustion instabilities.

5. CONCLUSIONS

The effect of a dynamic factor, related to the magnitude of dp/dt, on the peak burning rate
increases as b increases. However, when b\50, the peak burning rate does not increase, and
the solution remains bounded. The burning rate ‘runaway’ is a numerical difficulty, and is not
a solution to the thermal wave models.

The burning rate amplitude increases with increasing H. However, the increase of the
burning rate amplitude is stepwise. There is no apparent intrinsic instability limit. When H is
larger, the state of the burning rate is composed of repeated, finite amplitude spikes.

The effect of the time step on the value of peak burning rate increases as the value of H
increases. At a greater H, this is not ignored.

The time required for significant changes in burning rate can occur within a time interval
smaller than a/r0

2 (Dt=1), commonly referred to as the characteristic response time of the
thermal wave. This time required for change decreases as the value of H or b increases.

APPENDIX A. NOMENCLATURE

A E(1−T�/Ts0
) (non-dimensional)

specific heat of solidcs

specific heat of gascg

E Es/RTs0
(non-dimensional)

activation energy of surface reactionEs

H Qs/cs(Tso−T�) (non-dimensional)
thermal conductivity of gaskg

ks thermal conductivity of solid
power of propellant pyrolysis lawm

n pressure index in steady burning relation
pressure indexns

P p/p0 (non-dimensional)
amplitude of pressure variation (non-dimensional)DP

p pressure
heat flux of solid–gas interfaceqg

Qs heat release per unit mass for surface reaction
transient burning rater

R steady burning rate
r/r0 (non-dimensional)R

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 627–640
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R universal gas constant
timet

Ts0
initial surface temperature
dimensionx

Greek letters
a ks/rscs, thermal diffusivity

compression speed parameterb

h x(r0/a) (non-dimensional)
(T−T�)/(Ts0

−T�) (non-dimensional)u

rs density of solid
t(r0/a) (non-dimensional)t

Subscripts
0 initial steady state
j grid point

partial derivative with respect to hh
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